Characterization of Holomorphic Bisectional Curvature ofGCR-Lightlike Submanifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Holomorphic Bisectional Curvature of GCR-Lightlike Submanifolds

We obtain the expressions for sectional curvature, holomorphic sectional curvature, and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite Kaehler manifold. We discuss the boundedness of holomorphic sectional curvature of GCR-lightlike submanifolds of an indefinite complex space form. We establish a condition for a GCR-lightlike submanifold of an indefinite comple...

متن کامل

Kähler Submanifolds with Lower Bounded Totally Real Bisectional Curvature Tensor

In this paper, we prove that if every totally real bisectional curvature of an n(≥ 3)-dimensional complete Kähler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than c 4(n2−1)n(2n− 1), then it is totally geodesic. Mathematics Subject Classifications: 53C50, 53C55, 53C56.

متن کامل

The Holomorphic Bisectional Curvature of the Complex Finsler Spaces

The notion of holomorphic bisectional curvature for a complex Finsler space (M, F ) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. By means of holomorphic curvature and holomorphic flag curvature of a complex Finsler space, a special approach is emloyed to obtain the characterizations of the holomorphic bisectional curvature. For the class of gen...

متن کامل

Screen conformal half-lightlike submanifolds

We study some properties of a half-lightlike submanifoldM , of a semi-Riemannianmanifold, whose shape operator is conformal to the shape operator of its screen distribution. We show that any screen distribution S(TM) of M is integrable and the geometry of M has a close relation with the nondegenerate geometry of a leaf of S(TM). We prove some results on symmetric induced Ricci tensor and null s...

متن کامل

Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature

In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematical Physics

سال: 2012

ISSN: 1687-9120,1687-9139

DOI: 10.1155/2012/356263